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ABSTRACT 
A significant portion of the data used for different purposes includes location 
information. As a result, there is an increasing effort to find a general framework by 
utilizing crucial technological drivers. Similarly, as geospatial data becomes more 
accessible; the possibilities for changing scientific discoveries and methods in modern 
society are endless. Naturally, many applications depend on the accurate and efficient 
geospatial data processing. However, using the traditional method to process and 
compute geospatial data frequently presents several difficulties. The explanation for this 
is the large volume, heterogeneity, and distributed nature of these data. Consequently, it 
is imperative to implement contemporary techniques that can manage the computational 
and analytical demands of this massive amount of geospatial data. Many of these 
systems—particularly those related to High-Performance Computing (HPC) 
technology—have been described in the literature. Therefore, the goal of this article is to 
review the application of HPC technology to big data processing in geospatial 
applications. The review's findings show that predictive data science tools like parallel 
and grid computing are available in geographic big data applications, enabling quick and 
effective processing that will help create a sustainable ecosystem. Also, the efficient 
management of large data sets requires storage, visualization, analytics, and analysis. Of 
course, this review demonstrated how recent advancements in computing have impacted 
geospatial data handling. 
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1. INTRODUCTION 
Many industries, including banking, healthcare, telecommunications, and 

homeland security, create massive amounts of data, or "big data." The quick 
generation of huge volumes of geospatial data (geospatial big data) from both in-
situ and remote sensors is another important effect of the current revolution in 
sensor and computing technologies Bill et al. (2022). According to Lee and Kang 
(2015), there is a prediction that the amount of personal location data will increase 
by 20% annually, with location-aware information accounting for a significant 
portion of the 2.5 quintillion bytes of data generated daily. There has been 
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application of geospatial big data in various areas of endeavors like public health, 
business analysis, natural hazard prediction and mitigation, sustainable 
development, and climate change. Every day, a growing amount of data is produced 
by computers, smartphones, sensors, and even people. Numerous applications of 
geospatial big data have been documented in the literature, including urban 
planning (see Huang et al. (2021)), mobility analysis, and social network analysis 
(e.g., Dong et al. (2021); Huang et al. (2021)). Others are, managing of event, 
modelling of building occupancy (see Versichele et al. (2014)), studying of travel 
orientation, and modelling of urban functions (see Hu et al. (2018), Wei and Yao 
(2021). As a result, it is essential to effectively and efficiently extract information 
from these massive geospatial data sets and produce new knowledge. 
Computational techniques have demonstrated their effectiveness in achieving the 
intended result in this case. There are many research opportunities with 
computational methods and digital data Watts (2014), and it is likely that these tools 
will lead to new discoveries O'Sullivan and Manson (2015).  

Geospatial information computing is the computational task necessary to make 
geospatial data meaningful to users. A few of the crucial elements that are included 
in this are storage of data, management of data, processing of data, analysis of data, 
and mining of data (Liu et al. (2016); Baralis et al. (2017); Hu et al. (2018). 
Unfortunately, trying to solve certain problems makes geospatial information 
computing a challenging task. For example, the amount of global geospatial data, 
measured in petabytes (pb), exceeds the computational capacity of desktop-era 
analytical tools and traditional computing technologies. The speed at which 
thousands of geotagged tweets are collected every minute and terabytes (tb) of 
satellite data are acquired each day affects the capacity of traditional computing and 
data storage techniques. Furthermore, gathering geospatial data is typically 
accomplished through a variety of methods (such as social media, remote sensing, 
mapping, surveying, location-based data, and Internet of Things [see Yao and Li 
(2018)]. Various data models, such as raster and vector [refer to Li et al. (2017)] can 
also be used to abstract geospatial data. According to Chen et al. (2015), they also 
have varying spatial and temporal resolutions and are encoded using a variety of 
data formats, including geodatabases. Because of these varied qualities, tools for 
data processing and spatial analysis tasks require interoperability and standards. 
Global geospatial data are also frequently gathered by dispersed sensors and kept 
on servers. Regrettably, it is difficult to move data from one place (like a local server) 
to another (like the cloud) for processing due to high volume, high velocity, and the 
need to make real-time judgment Yang et al. (2013). In response to the necessity of 
addressing the above issues however, many processing and computing tools have 
evolved. High-performance computing technology, for instance, has proven effective 
in solving problems related to large-volume processing and geospatial information 
processing. 

For numerous applications, many studies indicate that HPC has been utilized 
for solving geospatial issues (e.g., Hegeman et al. (2014); Pektürk and Ünal (2018); 
Yang et al. (2019). Initially, the complex nature of computations inherent in 
geospatial analyses was a driving force behind efforts to improve performance. Non-
trivial examples of these issues remain unsolvable today, requiring a significant 
amount of memory and processing time. The solutions produced by other spatial 
analysis techniques also need a huge processing. 

Although studies on geospatial big data has been carried out by many 
researchers within the academic and industrial sectors, more studies that will 
capture the most recent state-of-the-art methodology geospatial big data processing 
using high-performance computing technology is required as demonstrated by this 
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review. The study is organized in seven sections. In section 2, we presented an 
overview of geospatial big data. In section 3, we described the principles of High-
performance computing. Section 4 dealt with geospatial database management 
systems based on HPC. In section 5, the classification of computational systems was 
discussed. Section 6 has to do with the paradigm shift in geospatial big data 
computing. Section 7 concluded the research work. 

 
2. GEOSPATIAL BIG DATA 

Big data has been defined differently from industrial, academic, and 
technological standpoint (Chen et al. (2014); De Mauro et al. (2015)). However it is 
generally understood to be datasets larger than what can be handled by the typical 
modern data management tools (Batty (2013)). Big Spatial Data (BSD) fits the above 
characteristics and gives rise to specialized systems, techniques, and algorithms. 
Even before the big data era officially began, there was a wave of people using BSD. 
Geospatial big data facilitates real-time assistance, cost savings through increased 
efficiency, and the analysis of spatial relationships. Global elevation, remote sensing, 
and sensor data from the Internet of Things (IoT) are just a few sources of spatial 
big data. Other examples are land use, social media, public transportation, 
navigation, ontological, heterogeneous data via online services, and climate 
(Gaigalas (2019); Wu. (2019)).  

Big data that includes location information is referred to as geospatial big data. 
Location information is crucial in the big data era (Huang et al. (2018)), since most 
data are spatial by nature. Lee and Kang (2015) believe that through the geospatial 
big data application, there are numerous opportunities for scientific advancement 
in many domains, such as precision agriculture, public health, climate science, 
disaster management, and smart cities. However, the ability to quickly and 
effectively extract useful information from big data is more important than the data 
itself. But, there are challenges in extracting important information and 
configurations due to the intrinsic space and time features of geospatial data 
Gudivada et al. (2015)] 

 
2.1. MAIN SOURCES OF GEOSPATIAL BIG DATA 
2.1.1. EARTH OBSERVATION 
The statistical data from the Committee on Earth Observation Satellites (CEOS) 

suggest that over 500 Earth observation (EO) satellites have been launched in the 
last 50 years, and over 150 satellites are anticipated (Guo (2017)). The swift 
advancement of EO technology and the ongoing deployment of remote sensing 
satellites have contributed to the rise in EO data resolution, quantity, and variety. 
This suggests that EO data has transitioned into big data (Xia et al. (2018)). Of 
course, it is feasible to produce enormous amounts of diverse, dynamic, and widely 
distributed geospatial data using EO systems. Remote sensing has been one of the 
main ways to gather Earth observation data globally. For instance, the Landsat 
archive held more than 5.5 million images (Wulder et al. (2016), which are larger 
than one petabyte [Cervone et al. (2016)). Also, more than nine petabytes of data 
were being managed by EOSDIS as of 2014, and roughly 6.4 tb of data is being added 
daily by the system to its records. Furthermore, big Earth observation data 
collection now has an additional avenue through the application of drone-based 
remote sensing (Athanasis et al. (2018)). 
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2.1.2. GEOSCIENCE MODELLING  
Through the quick advancement of computing power, the Earth occurrences 

can now be replicated with ever-higher spatiotemporal characteristics, producing 
vast amounts of simulated geospatial data (Blais and Esche (2014)). Common 
examples are the climate modelling by the Intergovernmental Panel on Climate 
Change (IPCC). The IPCC Fifth Assessment Report (AR5) alone produced simulated 
climate data amounting to 10pb, and hundreds of petabytes are expected to be 
created for the upcoming IPCC report (Yang et al. (2017)). Furthermore, we know 
that to sweep different parameters requires that a model frequently needs to be run 
multiple times. Thus, the process of standardizing the geoscience models generates 
huge volumes of geospatial data in addition to simulations. For instance, calibrating 
Model E (a NASA climate model) produced 3 terabytes of climate data from 300 
models that were run in a single test (Li et al. (2015)). 

 
2.1.3. INTERNET OF THINGS 
The IoT is rapidly developing, and becoming a vital tool in almost every 

industry (Kumar et al. (2019)). Its origins can be traced to Kevin Ashton, who first 
used it in 1999 when he discussed the utilization of radio frequency identification 
(RFID) in supply chain management. The Internet of Things includes everything that 
has access to a network, including sensors that can provide recommendations on 
where to put pesticides or fertilizer locally [i.e., agro application (Maschi et al. 
(2018); Andreazi et al. (2021)]. It creates a massive network of interrelated things 
by connecting "things" to the Internet and allowing them to interact and 
communicate. 

Various formats (e.g., discrete & streaming data, images, and social media) can 
deliver data on this network (De Azevedo et al. (2022)), as such, sensors can be used, 
with or without humans. Connecting the network to the Internet allows the virtual 
and physical worlds to communicate, and decisions can be made without human 
intervention. With the IoT, unstructured or semi-structured geospatial data streams 
are constantly produced globally. But, these data are more heterogeneous & noisy 
than structured multi-dimensional geospatial data generated by Earth Observations 
and model simulations. 

 
2.1.4. VOLUNTEER GEOGRAPHICAL INFORMATION SYSTEM 
Volunteered geographic information (VGI) refers to the production and sharing 

of geographic data from the general public.  According to Haklay et al. (2014), it is 
crowdsourced geographic information delivered by many contributors. Also, Zook 
and Breen (2017).  define VGI as the spatial subcategory of user-generated content 
that emerged during the Web 2.0 era; which was associated with the growth of GPS 
and smartphone technologies, blogs, social media, and wikis.  

With the above-mentioned technologies, billions of citizen sensors around the 
globe are producing and sharing vast amounts of location-based data. For example, 
social media sites like Facebook, Instagram, Twitter, and Facebook use location 
sharing, or geotagging, to create virtual spaces where millions of people can connect 
digitally. Of course, 500 million tweets are sent daily (Internet Live Stats, 2019), and 
5 million tweets are geotagged every day, based on the estimated 1per cent rate 
(Marciniec (2017)). In general, social media provides an abundance of resources for 
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researching people's experiences in the outdoors and comprehending online 
conservation discussions or debates (Di Minin et al. (2015)).  

 
3. PRINCIPLE OF HIGH-PERFORMANCE COMPUTING 

HPC is a sophisticated system for processing massive amounts of data and 
resolving computing- and data-intensive issues (Niculescu (2020)), which was 
invented in the 1960s. HPC technology combines parallel programming and system 
administration (such as network and security expertise). Even though 
supercomputing is now considered a subset of HPC, the latter emerged after the 
former. But supercomputing has recently given way to the grid in HPC.  

The Graphic Processing Units (GPUs) and Central Processing Units (CPUs) are 
the primary components that power the HPC. CPUs carry out serial processing, in 
which a single task is normally handled by a single CPU at a time.  However, Ji et al. 
(2017) stated that parallel processing is performed using the GPUs. In HPC, "parallel 
architecture" describes the simultaneous execution of multiple processes. In this 
case, computation is separated into many parallelizable subtasks or decomposition. 
Once the processing is finished, the final output is typically combined. For 
processing spatial data on a large scale, some popular HPC platforms are listed in 
Table 1. The platforms in table 1 can be broadly categorized based on how much 
parallelism the hardware can support. For example, parallelism on CPUs is aided by 
MPI, UPC, and OpenMP. Numerous HPC applications can be realized more easily 
using the HPC platforms. These include fog computing Steffenel (2018), cloud 
computing (Mauch et al. (2013)), and the developing edge computing (Shi et al. 
(2016); Cao et al. (2020)). In general, modern computational science and scientific 
research are linked to HPC. As a result, it has been primarily used in numerous areas 
of operations. Furthermore, geospatial information processing can benefit greatly 
from its computational capability. 
Table 1 

Table 1 HPC Platforms for Large-Scale Processing of Spatial Data 

HPC platforms Description 

Message Passing 
Interface (MPI) 

They work with highly parallel computing architectures.  
 

Open Multi-
Processing 
(OpenMP) 

An API for C/C++ and Fortran that facilitates multi-platform shared memory 
parallel programming. 

Unified Parallel 
Computing (UPC) 
 

By extending the C programming language, UPC allows programmers to 
work with a single shared, partitioned address space. Though the variables 
contained in this address space contains are only physically owned by one 
processor, they can be read and written by any processor. 

General-purpose 
computing on 
Graphics Processing 
Units (GPGPU) 

This employs GPUs to carry out computations that are handled by CPUs. It is 
possible for a GPU to outperform many CPUs in calculation speed if the 
computational operation is divided into manageable subtasks because it has 
multiple cores for basic tasks 

Apache Hadoop, and 
Apache Spark 

The open-source software package Apache Hadoop is built on the 
MapReduce programming prototype, with the capacity to automatically 
manage failures in hardware that are taken for granted. The MapReduce 
model has limitations that need a dataflow structure in linear format to read 
and write data to and from the disk. In response, Apache Spark was created. 
Distributed shared memory is used by Apache Spark in place of a hard drive 
disk. 
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4. GEOSPATIAL DATABASE MANAGEMENT AND DATA 

PROCESSING ON HPC 
The emergence of geospatial big data brings new applications and issues (Yue 

and Jiang (2014)). Effective storage, management, and querying of geospatial data 
has become a research focus, and these are issues that need to be addressed (Schmid 
et al. (2015); Liu et al. (2016); Baralis et al. (2017); Hu et al. (2018). Before any 
spatial analysis can begin, a geospatial database must be designed and developed. 
The first thing to do in this case is to identify and define the database's content 
(database design). Next, the growing collection of publicly available spatial datasets 
from multiple sources may be used to create the geospatial database. The primary 
sources are social media (Tsou (2015); Cervone et al. (2016)); remote sensing 
(Mulyono and Fanany (2015); Chi et al. (2016); surveying and mapping (Lu et al. 
(2017)); location-based (Liu et al. (2015); Zhuang et al. (2017)); and Internet of 
Things (Ding et al. (2014); Alelaiwi (2017)).  

Big data attributes have generally grown from the original "3Vs (Volume, 
Velocity, Variety)" to the more recent "4Vs (+ Veracity)" and "5Vs (+ Value)" (Li and 
Li (2014)). Therefore, processing contemporary geospatial data requires 
sophisticated computational tools. For example, scalable algorithms are necessary 
for real-time data processing, and large, inexpensive, and dependable storage is 
needed for massive volumes of data. Geospatial big data processing and analyses 
often involves many floating-point calculations, such as changing coordinate 
reference systems, transforming geometry, and assessing spatial relationships. To 
speed up these calculations, frameworks and systems built on MapReduce and 
Spark, such as SpatialHadoop and GeoSpark (Yu et al. (2015)) emerged. 

The development and improvement of HPC tools, such as cloud computing, are 
having a major impact on the possibility of utilizing high-volume or high-velocity 
geographic data acquisition in more applications. In particular, the first organized 
systematic platforms for handling remotely sensed big data have improved the 
remote sensing method (Wang et al. (2018)). Additionally, big data analytics 
software can be easily implemented on distributed, parallel computing platforms 
thanks to big data platforms like Hadoop (Lu et al. (2017)). The ability to handle 
geospatial big data with HPC is required for making timely and improved decisions 
in time-sensitive circumstances, such as emergency response (Bhangale et al. 
(2016)). Larger issues can also be solved with it, like mapping and change detection 
of forest at global scale within acceptable timeframes (Yin et al. (2017)). 

 
5. CLASSIFICATION OF COMPUTATIONAL SYSTEMS 

5.1. SINGLE-CORE SEQUENTIAL ALGORITHMS 
On a computer, a single-core sequential algorithm executes serially. It consists 

of many actions that convert an input into an output, such as computations, loops, 
and decisions. A typical single-core sequential algorithm is shown in Figure 1. In this 
case, accessing the Level 1 cache naturally takes only a few clock cycles, whereas 
accessing other levels inevitably takes more cycles.  
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Figure 1 

 
Figure 1 Single-Core Sequential Algorithm 

 
The conventional argument for sequential algorithms is their worst-case 

performance; however, this can be deceptive (Roughgarden (2019)). Consequently, 
the database community has created a highly valued collection of benchmark 
datasets to support such Werner Parallel Processing Techniques for High-
Performance Big Geodata. 

 
5.2. PARALLEL ALGORITHMS  
Early research on using HPC for geospatial analyses concentrated on 

uniprocessors with comparatively little parallelism. On the other hand, later work 
used pipelining and more processors that operate in parallel. Additionally, features 
of the data and algorithm typically require careful consideration for the algorithmic 
design to improve the performance of a parallel algorithm for handling geospatial 
data (Guan et al. (2014); Li et al. (2018)). By and large, numerous studies on parallel 
computing and the adaptation of current computing frameworks have been carried 
out for geospatial data preprocessing, parallel algorithm design, simulation 
modelling, and data analysis, (e.g., Zhao et al. (2019); Kang et al. (2019); Safanelli et 
al. (2020). The subsequent subsections provide two key parallel algorithm 
categories. 

 
5.2.1. SHARED MEMORY PARALLEL ALGORITHMS  

Figure 2 

 
Figure 2 A Simplified View of Four-Processor Shared Memory Design 
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The usual setup for Parallel Algorithms is a multi-core computer with a single 

main memory space as shown in Figure 2. Modern multi-core CPU-based 
workstations that share the same main memory among all cores are notable 
examples of such systems (Schmidt et al., 2018). Despite operating in parallel, it can 
carry out a specific subset of operations in an atomic fashion. This suggests that 
concurrent activities cannot stop the CPU (Sterling et al. (2018). Programs with 
shared memory have the advantage of having a straightforward, consistent joint 
state due to global variables. However, their limited scalability is a major drawback 
(Lee (2014). 

 
6. DISTRIBUTED MEMORY PARALLEL PROCESSING 

ALGORITHM 
A system architecture in which separate, dispersed constituents cooperate to 

finish an operation without frequently utilizing joint resources is known as a 
distributed memory. Stated differently, it is a computer system with multiple 
processors, each of which has a private memory (Pardo et al. (2021). Here, a 
collection of independent PCs is used, which gives the impression to users that it is 
a single, cohesive system. When remote data is needed, computational tasks must 
communicate (via explicit messages) with remote processors to transfer the 
necessary data. However, computational tasks can function effectively with local 
data. Supercomputers with thousands of computing nodes typically use this kind of 
parallel computing. To coordinate their work, the computers—also referred to as 
nodes—speak with one another via a network. The underlying principles of the 
communication are typically rather ambiguous; for instance, there is no assurance 
that a message will be received at all, or even precisely once, nor is there any 
guarantee on when this will happen. In general, coordinating such systems is 
difficult and broadly classified into two: either adding a central management 
component (which makes sense), such as it is often undertaken in cloud computing 
algorithms (like Hadoop's Node Manager) and HPC algorithms (like MPI rank zero), 
or introducing a set of guidelines to be adhered by all distributed parts for creating 
a reliable combined outcome. 

 
7. PARADIGM SHIFT IN GEOSPATIAL BIG DATA COMPUTING  

7.1. CLOUD COMPUTING  
There is rapid advancement in cloud computing technology, which has 

culminated in the possibility to execute global-scale multifarious simulations. This 
is especially true for the efficient management and processing of big geospatial data 
(Li and Huang (2017). Cloud computing, according to Sugumaran and Armstrong 
(2017) is a general distributed model that makes network-based configurable 
computer services, like storage. It provides easy, on-demand, and widespread access 
to a shared pool of reconfigurable means of computing that can be quickly released 
with little involvement from providers of service or management. A typical 
Geospatial Cloud is provided by the Environmental Systems Research Institute (see 
Figure 3). 
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Figure 3 

 
Figure 3 The Esri Geospatial Cloud. Source: Environmental Systems Research Institute (ESRI, 
2019). 

                              
The broader range of technologies and products that Esri offers is embodied in 

the Esri Geospatial Cloud. Because Esri Geospatial Cloud is designed to scale easily, 
users can query its billions of records to ask sophisticated questions and perform 
location analytics. Generally, the proliferation of cloud-based applications highlights 
the enormous potential that cloud computing offers and represents a revolution in 
GIScience (Li and Li (2017)). For example, the development of distributed storage 
for spatial data and parallel spatial algorithms has been aided by certain open-
source cloud systems like Spark and Hadoop (Yao et al. (2018); Yao et al. (2018a)).  

Large companies (like Google and Amazon) that offer enticing, customizable 
hardware and software configurations are more likely to make cloud computing 
services available to the general public. Numerous geospatial problem domains 
have demonstrated the effectiveness of cloud computing (Hegeman et al. (2014)). 
Summarily, cloud computing offers vital assistance in processing big data to address 
the 4Vs and obtain value improved research, operations, and decision support 
across many geospatial domains (Yang et al. (2016)). Though cloud computing has 
many advantages, it also has some disadvantages such as latency. Since 
communication can only happen at the speed of light, it takes place much more 
slowly (Satyanarayanan (2017)). The rise of Internet of Things-connected electronic 
devices generates data annually in zettabytes (1021 bytes), which makes bandwidth 
a key problem (Shi and Dustdar (2016). However, the emergence of fog and edge 
computing has gained popularity as concepts. Of course, decentralized processing 
(in fog and edge) reduces the need for bulk data transfers and boosts overall 
computational performance between distinct tools and the cloud.  

 
7.2. FOG COMPUTING WITH HPC  
Data processing at a cloud server is the initial cloud-based GIS model (Barik et 

al., 2016). A very large time for processing and high internet bandwidth is required 
for this kind of system. By providing the computation overhead close to the client 
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edge, fog computing solves the issue of lengthy processing times. The greatest 
enhancement potential in cloud GIS architecture comes from fog computing, which 
lowers latency and boosts throughput. As a computing paradigm falling between 
conventional cloud or data centres and smart end devices (Iorga et al. (2018)), it 
was first used by Cisco in 2012 (Dastjerdi et al. (2016)). In this sense, it is 
complementary to cloud computing in that it allows users to decentralize data 
centre resources, improving user experience and quality of service (Sareen, Gupta, 
and Sood, 2017). However, the processing of various services based on fog 
computing framework isn't limited to cloud data centres (Monteiro et al. (2016); 
Sareen et al. (2017); Verma et al. (2017).  

With fog computing, the amount of cloud storage required for geospatial big 
data is typically reduced. Furthermore, a decrease in the needed transmission 
power leads to an enhanced general efficacy. In the study conducted by Barik et al. 
(2016), geospatial data was processed at the edge using a Fog computing device. 
The traditional IoT architecture usually uploads data generated by IoT devices (also 
called edge devices) directly to the cloud with slight processing because the 
processing power of edge devices are limited. In fog computing, a mid-computing 
level is created comprising of a group of fog nodes in between the edge devices and 
the cloud. An obvious plus of this system is that due to the fact that fog nodes are 
closer to the edge devices and with their lower network latency, it is possible to 
rapidly transfer data to them for processing and filtering in real-time. Subsequently, 
the data is transferrable (after filtering) to the cloud for data mining and analysis 
using conventional HPC, AI, or Hadoop-like systems. Furthermore, IoT generates 
geospatial big data because many edge devices use location-based sensors. Thus, 
real-time processing of geospatial data is important to fog computing.  

 
7.3. DISCRETE GLOBAL REFERENCE FRAMEWORK WITH HPC  
Heterogeneity has long been a limiting factor in traditional geospatial data 

handling techniques. Some examples of the various phases in which heterogeneity 
manifests itself are in the method by which data are collected, data models and 
formats, and spatiotemporal resolutions. Also, heterogeneity is produced by 
geospatial big data because location-based sensors are widely used to collect data 
from a variety of industries. Combination and integration of geospatial big data with 
HPC becomes a serious issue when there is much heterogeneity. Owing in part to 
the absence of a referencing framework capable of effective data storage, data 
integration and data management for integration of data and parallel processing, 
most HPC schemes and researches today handle a particular geospatial data kind 
with particular parallel algorithms.  

As a reference frame, traditional coordinate systems like latitude and longitude 
have proven to be useful. However, a relatively new framework called Discrete 
Global Grid System (DGGS) is more efficient for managing and processing 
heterogeneous geospatial big data connected with the Earth's curved surface 
(Sabeur et al. (2019). Simply, the DGGS divides and addresses the world using a 
hierarchical tessellation of cells.  

 
7.4. GEOSPATIAL ARTIFICIAL INTELLIGENCE WITH HPC  
In computer science, artificial intelligence (AI) is concerned with the use of 

computer systems to simulate human intelligence in a problem solving 
environment. It encompasses various fields and subfields. Deep learning— a 
subfield of machine learning in AI has considerably advanced lately (LeCun et al, 
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(2015). The integration of geospatial and AI technologies results in the emergence 
of geospatial artificial intelligence (GeoAI). Deep learning and other AI technologies 
are used by geospatial artificial intelligence (GeoAI) for extracting valuable 
information from geospatial big data (VoPham et al. (2018) as demonstrated by 
many studies in literature. A few noteworthy examples are land cover mapping 
(Kussul et al. (2017); Ling and Foody (2019)) or and remote sensing image 
classification (Hu et al. (2015)), and object detection (Cheng et al. (2016)). GeoAI 
presents a promising answer to issues associated with geospatial big data. Similarly, 
geospatial big data is crucial for training GeoAI's sophisticated deep neural 
networks (DNNs) and has recently sparked breakthroughs in deep learning.   

Tech giants like Google, Microsoft, and IBM have shown a keen interest in 
creating large-scale platforms for artificial intelligence upon which massive 
computing clusters runs. However, most recent GeoAI study is carried out on 
workstations or single-node computers, based on comparatively lesser data 
volumes to train the model. Of course, developing high-performance, scalable GeoAI 
structures and platforms that fully utilize geospatial big data to build larger and 
more sophisticated simulations requires more researches. This can be accomplished 
by combining HPC technologies with general-purpose big data platforms in Hadoop 
to handle geospatial big data, as in the case of TensorFlow (Abadi et al. (2016)) and 
Apache SINGA, with deep learning platforms. 

 
8. CONCLUSION 

An enormous amount of geospatial data is produced at a very rapid pace, known 
as geospatial big data. The traditional computational approach that uses hardware, 
software, and database technologies for data acquisition, storage, manipulation, 
analysis, management, and presentation is insufficient for handling these kinds of 
data. However, handling geospatial big data has become possible by using the HPC 
technology. Of course, geospatial big data analytics now has a better method due to 
the application of HPC.  

The application of HPC is becoming more important in solving problems related 
to geospatial big data. However, HPC is confronted with both fresh prospects and 
problems from geospatial big data. Of course, the geospatial data science has 
apparently changed in respond to the integration of geospatial big data, AI, cloud 
computing, fog computing, and big data. In conclusion, HPC will remain essential in 
this new era because it is sufficient for solving complex problems more quickly.   
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