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ABSTRACT 
The rise of Session Initiation Protocol (SIP) trunks has significantly enhanced voice 
communications in contact centers, offering benefits such as cost efficiency and 
scalability. However, these advancements also introduce technical challenges like call 
drops and network disruptions. Traditional manual detection methods delay issue 
resolution, resulting in prolonged downtimes and reduced service quality. This study 
identifies a critical gap: the need for proactive, real-time monitoring tools to detect and 
resolve SIP trunk issues before they impact users. To address this gap, the Automated SIP 
Trunk Guardian (ASTG) was developed, integrating machine learning algorithms such as 
Isolation Forest and One-Class Support Vector Machines (SVM) along with natural 
language processing (NLP) to automate detection and visualization of anomalies. The 
system was evaluated using 160 SIP incident samples and expert feedback guided by 
ISO/IEC 25010. Results demonstrated significant improvements over manual detection, 
including reduced mean time to detect (MTTD) and mean time to resolve (MTTR), 
increased precision, recall, and F-measure. This study contributes a practical, 
operationally validated framework for SIP trunk anomaly detection in contact centers, 
offering measurable improvements in service reliability and efficiency. 
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1. INTRODUCTION 
The emergence of Session Initiation Protocol (SIP) trunks, which enable voice 

communication over the Internet, has resulted in notable breakthroughs in contact 
center operations. SIP trunks provide several benefits, including cost efficiency, 
scalability, and ease of management. However, they also introduce technical issues 
such as dropped calls, distorted audio, and network disruptions. Traditional manual 
detection methods rely on user-reported tickets, leading to reactive responses that 
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prolong mean time to detect (MTTD) and mean time to resolve (MTTR), ultimately 
reducing service quality. 

Despite advances in VoIP and AI, proactive detection for SIP trunk anomalies 
remains underdeveloped, especially in operational contexts where real-time 
monitoring and integration with support workflows are essential. This study 
proposes the Automated SIP Trunk Guardian (ASTG), a machine learning-driven 
system designed to automate detection, visualization, and notification of SIP trunk 
anomalies, aiming to reduce operational delays and improve service reliability. 

 
2. SYSTEM ARCHITECTURE AND FRAMEWORKS 

2.1. THEORETICAL FRAMEWORK 
The ASTG system is grounded in the principles of supervised learning, a 

category of machine learning where structured information is used to train models 
to interpret input data correctly. Historical SIP trunk performance data is used to 
train models to identify patterns and predict anomalies. The theoretical framework 
aligns with existing IOT anomaly detection approaches Rafique et al. (2024), 
emphasizing feature extraction, model training, preliminary data processing, and 
continuous monitoring for real-time anomaly detection. Algorithms such as 
Isolation Forest and Convolutional Neural Networks (CNNs) are applied to detect 
deviations from normal behavior. 
Figure 1 

 
Figure 1 Framework for Machine Learning-Based Anomaly Detection in IOT Networks 
Rafique et al. (2024)  

 
2.2. CONCEPTUAL FRAMEWORK 
The ASTG conceptual framework follows an input-process-output model, 

mapping SIP trunk data through the system for proactive anomaly detection. 
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Input: - Historical SIP trunk performance metrics (call quality, latency, packet 
loss) - Real-time SIP trunk logs 

Process: 1. Data preprocessing: clean and normalize data 2. Feature extraction: 
capture characteristics of normal and anomalous behavior 3. Model training: 
supervised learning (SVM, CNN) and unsupervised learning (Isolation Forest) 4. 
Anomaly detection: detect anomalies in real-time using trained models 5. NLP 
analysis: analyze SIP trunk logs for textual patterns and issues (GPT-4 assisted) 6. 
Real-time monitoring: dashboards and visualization tools 7. Alert generation: notify 
technical teams based on thresholds and anomaly scores 

Output: - Web-based application with machine learning-driven monitoring and 
visualization of SIP trunk performance 
Figure 2 

 
Figure 2 Relationship of Variables for the Development of SIP Trunk Detection Solution 

 
2.3. SYSTEM ARCHITECTURE 
The ASTG system integrates several modules to detect and manage SIP trunk 

issues: 
1) Data Collection Module – Captures historical and real-time SIP trunk 

performance metrics, including MOS, AQR, signaling IP, Station ID, and 
call duration. 

2) Learning Module – Implements One-Class SVM for supervised 
anomaly classification and Isolation Forest for unsupervised detection 
of rare events. 

3) Detection Module – Processes incoming logs, applies anomaly 
detection algorithms, and categorizes events as Good (Green), Fair 
(Yellow), or Poor (Red) based on severity. 

4) NLP Module – Analyzes SIP trunk logs using GPT-enhanced NLP for 
contextual understanding of textual patterns. 

5) Visualization & Alert Module – Provides real-time dashboards and 
automated notifications to technical support staff for proactive 
intervention. 

6) Database Module – Centralized storage for all system logs, historical 
data, and performance metrics. 
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Learning Module 
Figure 3 

 
Figure 3 SIP Trunk Anomaly Detection Architecture  

 
Detection Module 
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Figure 4 

 
 

This architecture emphasizes operational integration, real-time monitoring, 
anomaly scoring, and actionable alerts, enabling a transition from reactive to 
proactive technical support. 

 
3. METHODOLOGY 

An experimental research design was applied to evaluate ASTG against 
traditional manual detection methods. 

Data Sources: - 160 SIP trunk incident cases (manual detection baseline) - 
Real-time SIP trunk logs - Expert feedback based on ISO/IEC 25010 quality 
standards 
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System Development: - Agile methodology with iterative feature integration - 
Isolation Forest and One-Class SVM trained on historical logs - NLP applied for log 
interpretation and contextual labeling 

Evaluation Metrics: - Accuracy metrics: precision, recall, F-measure, error rate 
- Operational metrics: mean time to detect (MTTD) and mean time to resolve 
(MTTR) - Expert perception: usability, functionality, and reliability 

Analysis: - Confusion matrix applied to compare predicted vs actual anomalies 
- Paired t-tests used to assess statistical significance in MTTD and MTTR 
improvements - Qualitative feedback from technical support experts included 

 
4. RESULTS 

System Accuracy: - True Positives: 116 (ASTG) vs 77 (manual) - False 
Positives: 12 (ASTG) vs 32 (manual) - False Negatives: 10 (ASTG) vs 36 (manual) 

Performance Metrics 

Metric Manual ASTG Improvement 

Error Rate 42.50% 13.75% 28.75% 
Precision 70.64% 90.63% 19.99% 

Recall 68.14% 92.06% 23.92% 
F-measure 69.37% 91.34% 21.97% 

 
Operational Metrics 

Metric Manual ASTG Mean Difference P-value 

MTTD 24.03 min 0.05 min 23.98 min 2.61E-76 
MTTR 190.82 min 32.05 min 158.77 min 1.14E-134 

 
Expert Perception: - Usability, functionality, and reliability rated “Highly 

Usable/Functional/Reliable” across multiple attributes (Likert scale 1–5, mean 
scores 3.85–4.73) 

 
5. DISCUSSION 

The ASTG system demonstrated substantial improvements over manual 
detection methods. MTTD and MTTR reductions indicate real operational efficiency 
gains, while improved precision and recall demonstrate accuracy and reliability in 
identifying true SIP trunk anomalies. 

The integration of Isolation Forest and One-Class SVM proved effective for 
detecting both rare anomalies and structured deviations. Expert feedback validated 
system usability and reliability, aligning with ISO/IEC 25010 standards. 

The theoretical and conceptual frameworks support the system’s design, 
illustrating that structured ML training on historical SIP trunk data combined with 
real-time anomaly detection provides measurable improvements. The results 
underscore the novelty in operational application: combining machine learning 
anomaly detection, ticket workflows, and real-time dashboards in a live-style 
contact center context is rarely reported in the literature. 
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6. CONCLUSION 

This study successfully developed and validated the Automated SIP Trunk 
Guardian (ASTG), demonstrating significant improvements over traditional manual 
detection in accuracy, MTTD, and MTTR. The system integrates machine learning 
algorithms, NLP log analysis, and real-time visualization to provide proactive 
monitoring and resolution of SIP trunk issues. 

The work contributes a practical, operationally validated framework for 
anomaly detection in contact centers, offering measurable benefits in service 
reliability and operational efficiency. Future work may explore deployment in 
production environments, inclusion of vendor-specific anomalies, and long-term 
adaptive learning for dynamic SIP traffic patterns.  
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