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ABSTRACT

The rise of Session Initiation Protocol (SIP) trunks has significantly enhanced voice
communications in contact centers, offering benefits such as cost efficiency and
scalability. However, these advancements also introduce technical challenges like call
drops and network disruptions. Traditional manual detection methods delay issue
resolution, resulting in prolonged downtimes and reduced service quality. This study
identifies a critical gap: the need for proactive, real-time monitoring tools to detect and
resolve SIP trunk issues before they impact users. To address this gap, the Automated SIP
Trunk Guardian (ASTG) was developed, integrating machine learning algorithms such as
Isolation Forest and One-Class Support Vector Machines (SVM) along with natural
language processing (NLP) to automate detection and visualization of anomalies. The
system was evaluated using 160 SIP incident samples and expert feedback guided by
ISO/IEC 25010. Results demonstrated significant improvements over manual detection,
including reduced mean time to detect (MTTD) and mean time to resolve (MTTR),
increased precision, recall, and F-measure. This study contributes a practical,
operationally validated framework for SIP trunk anomaly detection in contact centers,
offering measurable improvements in service reliability and efficiency.

Keywords: SIP Trunk, Anomaly Detection, Isolation Forest, One-Class SVM, Contact
Center, MTTD, MTTR, Automated Monitoring, ISO/IEC 25010

1. INTRODUCTION

The emergence of Session Initiation Protocol (SIP) trunks, which enable voice
communication over the Internet, has resulted in notable breakthroughs in contact
center operations. SIP trunks provide several benefits, including cost efficiency,
scalability, and ease of management. However, they also introduce technical issues
such as dropped calls, distorted audio, and network disruptions. Traditional manual
detection methods rely on user-reported tickets, leading to reactive responses that
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prolong mean time to detect (MTTD) and mean time to resolve (MTTR), ultimately
reducing service quality.

Despite advances in VoIP and Al, proactive detection for SIP trunk anomalies
remains underdeveloped, especially in operational contexts where real-time
monitoring and integration with support workflows are essential. This study
proposes the Automated SIP Trunk Guardian (ASTG), a machine learning-driven
system designed to automate detection, visualization, and notification of SIP trunk
anomalies, aiming to reduce operational delays and improve service reliability.

2. SYSTEM ARCHITECTURE AND FRAMEWORKS
2.1. THEORETICAL FRAMEWORK

The ASTG system is grounded in the principles of supervised learning, a
category of machine learning where structured information is used to train models
to interpret input data correctly. Historical SIP trunk performance data is used to
train models to identify patterns and predict anomalies. The theoretical framework
aligns with existing IOT anomaly detection approaches Rafique et al. (2024),
emphasizing feature extraction, model training, preliminary data processing, and
continuous monitoring for real-time anomaly detection. Algorithms such as
Isolation Forest and Convolutional Neural Networks (CNNs) are applied to detect
deviations from normal behavior.
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Figure 1 Framework for Machine Learning-Based Anomaly Detection in IOT Networks
Rafique et al. (2024)

2.2. CONCEPTUAL FRAMEWORK

The ASTG conceptual framework follows an input-process-output model,
mapping SIP trunk data through the system for proactive anomaly detection.
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Input:

- Historical SIP trunk performance metrics (call quality, latency, packet

loss) - Real-time SIP trunk logs

Process: 1. Data preprocessing: clean and normalize data 2. Feature extraction:
capture characteristics of normal and anomalous behavior 3. Model training:
supervised learning (SVM, CNN) and unsupervised learning (Isolation Forest) 4.
Anomaly detection: detect anomalies in real-time using trained models 5. NLP
analysis: analyze SIP trunk logs for textual patterns and issues (GPT-4 assisted) 6.
Real-time monitoring: dashboards and visualization tools 7. Alert generation: notify
technical teams based on thresholds and anomaly scores

Output: - Web-based application with machine learning-driven monitoring and
visualization of SIP trunk performance

Figure 2
INPUT PROCESS OUTPUT

Historical Data: 1. Data Preprocessing Web-Based Application
+ SIP trunk performance metrics Clean and normalize the data

(e.g., call quality, packet loss, 2. Feature Extraction Machine Learning Driven

latency) Extract relevant features that capture the characteristics of and Anomaly Detection

normal and ancmalous behavior System for SIP Trunk

Real-Time Data: | 3. Model Training . Performance
«Live SIP trunk traffic data Use supervised learning and deep learning techniques to train

« System logs

models on the extracted features

4. Anomaly Detection
Apply trained models to detect anomalies in real-time using
Isolation Forests and CNNs

5. Natural Language Processing (NLP)
Analyze SIP trunk logs for textual patterns and indicators of
issues. Integrate GPT-4 to enhance NLP capabilities for
better understanding and processing of new input data

6. Real-Time Monitoring
Implement dashboards and visualization tools to provide
immediate insights into SIP trunk performance

7. Alert Generation
Generate alerts based on predefined thresholds and anomaly
scores to notify technical teams of potential issues

Figure 2 Relationship of Variables for the Development of SIP Trunk Detection Solution

2.3. SYSTEM ARCHITECTURE

The ASTG system integrates several modules to detect and manage SIP trunk

issues:

1)

2)

3)

4)

5)

6)

Data Collection Module - Captures historical and real-time SIP trunk
performance metrics, including MOS, AQR, signaling IP, Station ID, and
call duration.

Learning Module - Implements One-Class SVM for supervised
anomaly classification and Isolation Forest for unsupervised detection
of rare events.

Detection Module - Processes incoming logs, applies anomaly

detection algorithms, and categorizes events as Good (Green), Fair
(Yellow), or Poor (Red) based on severity.

NLP Module - Analyzes SIP trunk logs using GPT-enhanced NLP for
contextual understanding of textual patterns.

Visualization & Alert Module - Provides real-time dashboards and
automated notifications to technical support staff for proactive
intervention.

Database Module - Centralized storage for all system logs, historical
data, and performance metrics.
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Learning Module
Figure 3
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Figure 3 SIP Trunk Anomaly Detection Architecture
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This architecture emphasizes operational integration, real-time monitoring,
anomaly scoring, and actionable alerts, enabling a transition from reactive to
proactive technical support.

3. METHODOLOGY
An experimental research design was applied to evaluate ASTG against
traditional manual detection methods.

Data Sources: - 160 SIP trunk incident cases (manual detection baseline) -
Real-time SIP trunk logs - Expert feedback based on ISO/IEC 25010 quality
standards
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System Development: - Agile methodology with iterative feature integration -
Isolation Forest and One-Class SVM trained on historical logs - NLP applied for log
interpretation and contextual labeling

Evaluation Metrics: - Accuracy metrics: precision, recall, F-measure, error rate
- Operational metrics: mean time to detect (MTTD) and mean time to resolve
(MTTR) - Expert perception: usability, functionality, and reliability

Analysis: - Confusion matrix applied to compare predicted vs actual anomalies
- Paired t-tests used to assess statistical significance in MTTD and MTTR
improvements - Qualitative feedback from technical support experts included

4. RESULTS

System Accuracy: - True Positives: 116 (ASTG) vs 77 (manual) - False
Positives: 12 (ASTG) vs 32 (manual) - False Negatives: 10 (ASTG) vs 36 (manual)

Performance Metrics

Metric Manual ASTG Improvement
Error Rate 42.50% 13.75% 28.75%
Recall 68.14% 92.06% 23.92%

Operational Metrics

ASTG
0.05 min

P-value

2.61E-76

Mean Difference

23.98 min

Manual

24.03 min

Metric

MTTD

Expert Perception: - Usability, functionality, and reliability rated “Highly
Usable/Functional /Reliable” across multiple attributes (Likert scale 1-5, mean
scores 3.85-4.73)

5. DISCUSSION

The ASTG system demonstrated substantial improvements over manual
detection methods. MTTD and MTTR reductions indicate real operational efficiency
gains, while improved precision and recall demonstrate accuracy and reliability in
identifying true SIP trunk anomalies.

The integration of Isolation Forest and One-Class SVM proved effective for
detecting both rare anomalies and structured deviations. Expert feedback validated
system usability and reliability, aligning with ISO/IEC 25010 standards.

The theoretical and conceptual frameworks support the system’s design,
illustrating that structured ML training on historical SIP trunk data combined with
real-time anomaly detection provides measurable improvements. The results
underscore the novelty in operational application: combining machine learning
anomaly detection, ticket workflows, and real-time dashboards in a live-style
contact center context is rarely reported in the literature.
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6. CONCLUSION

This study successfully developed and validated the Automated SIP Trunk
Guardian (ASTG), demonstrating significant improvements over traditional manual
detection in accuracy, MTTD, and MTTR. The system integrates machine learning
algorithms, NLP log analysis, and real-time visualization to provide proactive
monitoring and resolution of SIP trunk issues.

The work contributes a practical, operationally validated framework for
anomaly detection in contact centers, offering measurable benefits in service
reliability and operational efficiency. Future work may explore deployment in
production environments, inclusion of vendor-specific anomalies, and long-term
adaptive learning for dynamic SIP traffic patterns.
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