GEOSPATIAL BIG DATA PROCESSING USING THE HIGH-PERFORMANCE COMPUTING TECHNOLOGY
DOI:
https://doi.org/10.29121/shodhai.v1.i1.2024.13Keywords:
Analytics, Big Data, Computation, Geospatial Database, Spatial Analysis, Spatial DataAbstract
A significant portion of the data used for different purposes includes location information. As a result, there is an increasing effort to find a general framework by utilizing crucial technological drivers. Similarly, as geospatial data becomes more accessible; the possibilities for changing scientific discoveries and methods in modern society are endless. Naturally, many applications depend on the accurate and efficient geospatial data processing. However, using the traditional method to process and compute geospatial data frequently presents several difficulties. The explanation for this is the large volume, heterogeneity, and distributed nature of these data. Consequently, it is imperative to implement contemporary techniques that can manage the computational and analytical demands of this massive amount of geospatial data. Many of these systems—particularly those related to High-Performance Computing (HPC) technology—have been described in the literature. Therefore, the goal of this article is to review the application of HPC technology to big data processing in geospatial applications. The review's findings show that predictive data science tools like parallel and grid computing are available in geographic big data applications, enabling quick and effective processing that will help create a sustainable ecosystem. Also, the efficient management of large data sets requires storage, visualization, analytics, and analysis. Of course, this review demonstrated how recent advancements in computing have impacted geospatial data handling.
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ..., Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16, 265-283.
Alarabi, L., and Mokbel, M. F. (2017). A Demonstration of ST-Hadoop: A Mapreduce Framework for Big Spatio-Temporal Data. Proceedings of the VLDB Endowment, 10(12), 1961-1964. https://doi.org/10.14778/3137765.3137819
Alelaiwi, A. (2017). A Collaborative Resource Management for Big Iot Data Processing in Cloud Cluster Computing. The Journal of Networks Software Tools and Applications, 20(2), 1791-1799. https://doi.org/10.1007/s10586-017-0839-y
Andreazi, G. T., Estrella, J. C., Bruschi, S. M., Immich, R., Guidoni, D., Alves Pereira Júnior, L., and Meneguette, R. I. (2021). MoHRiPA-An Architecture for Hybrid Resources Management of Private Cloud Environments. Sensors, 21, 6857.
Athanasis, N., Themistocleous, M., Kalabokidis, K., and Chatzitheodorou, C. (2018). Big Data Analysis in UAV Surveillance for Wildfire Prevention and Management. in European, Mediterranean, and Middle Eastern Conference on Information Systems, 47-58, Springer, Cham. https://doi.org/10.1007/978-3-030-11395-7_5
Audebert, N., Le Saux, B., and Lefèvre, S. (2018). Beyond RGB: Very High-Resolution Urban Remote Sensing with Multimodal Deep Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 20-32. https://doi.org/10.1016/j.isprsjprs.2017.11.011
Baralis, E., Valle, A. D., Garza, P., Rossi, C., and Scullino, F. (2017). SQL Versus NoSQL Databases for Geospatial Applications. In Proceedings of the 2017 IEEE International Conference on Big Data, IEEE, Boston, MA, USA, 11-14 December 2017, 3388-3397. https://doi.org/10.1109/BigData.2017.8258324
Barik, R. K., Das, P. K., and Lenka, R. K. (2016). Development and Implementation of SOA-Based SDI Model For Tourism Information Infrastructure Management Web Services. In Proceedings of the 2016 6th International Conference of Cloud System and Big Data Engineering (Confluence), 748-753. Academic Press. https://doi.org/10.1109/CONFLUENCE.2016.7723633
Barik, R. K., Dubey, H., Samaddar, A. B., Gupta, R. D., and Ray, P. K. (2016). FogGIS: Fog Computing for Geospatial Big Data Analytics. 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering, December 09-11, 2016, Indian Institute of Technology (Banaras Hindu University) Varanasi, India. https://doi.org/10.1109/UPCON.2016.7894725
Batty, M. (2013). Big Data, Smart Cities and City Planning. Dialogues in Human Geography. 3, 274-279. https://doi.org/10.1177/2043820613513390
Bill, R., Blankenbach, J., Breunig, M. et al. (2022). Geospatial Information research: State of the Art, Case Studies and Future Perspectives. PFG 90, 349-389. https://doi.org/10.1007/s41064-022-00217-9
Blais, R., and Esche, H. (2014). Geomatics and the New Cyber-Infrastructure, Geomatica, 62(1), 431- 443.
Bhangale, U. M., Kurte, K. R., Durbha, S. S., King, R. L., and Younan, N. H. (2016). Big Data Processing Using HPC for Remote Sensing Disaster Data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5894-5897. IEEE. https://doi.org/10.1109/IGARSS.2016.7730540
Biljecki, F., and Ito, K. (2021). Street View Imagery in Urban Analytics and GIS: A Review. Landscape and Urban Planning, 215, 104217. https://doi.org/10.1016/j.landurbplan.2021.104217
Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An Overview of Edge Computing Research. IEEE Access, 8: 85714-85728. https://doi.org/10.1109/ACCESS.2020.2991734
Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J., and Waters, N. (2016). Using Twitter for Tasking Remote-Sensing Data Collection and Damage Assessment: 2013 Boulder Flood Case Study. International Journal of Remote Sensing, 37(1), 100-124. https://doi.org/10.1080/01431161.2015.1117684
Chen, X. W., and Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514-525. https://doi.org/10.1109/ACCESS.2014.2325029
Chen, M., Mao, S., Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209.
Chen, B., Yuan, H., Li, Q., Shaw, S., Lam, W. H. K., and Chen, X. (2015). The Spatiotemporal Data Model for Network Time Geographic Analysis in the Era of Big Data. International Journal of Geographical Information Science, 30(6), 1041-1071. https://doi.org/10.1080/13658816.2015.1104317
Cheng, G., Zhou, P., and Han, J. (2016). Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7405-7415. https://doi.org/10.1109/TGRS.2016.2601622
Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J., and Zhu, Y. (2016). Big Data for Remote Sensing: Challenges and Opportunities. Proceedings of the IEEE, 104(11), 2207-2219. https://doi.org/10.1109/JPROC.2016.2598228
Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K., and Buyya, R. (2016). Fog Computing: Principles, Architectures, and Applications. arXiv preprintarXiv:1601.02752. https://doi.org/10.1016/B978-0-12-805395-9.00004-6
De Azevedo, L. J. d. M., Estrella, J. C., Delbem, A. C. B., Meneguette, R. I., Reiff-Marganiec, S. and de Andrade, S. C. (2022). Analysis of Spatially Distributed Data in the Internet of Things in the Environmental Context. Sensors, 22, 1693. https://doi.org/10.3390/s22051693
De Mauro, A., Greco, M., and Grimaldi, M. (2015, February). What is Big Data? A Consensual Definition and a Review of Key Research Topics. In AIP Conference Proceedings, 1644(1), 97-104. https://doi.org/10.1063/1.4907823
Di Minin, E., Fink, C., Hiippala, T., and Tenkanen, H. (2015). A Framework for Investigating Illegal Wildlife Trade on Social Media with Machine Learning. Conservation Biology, 33(1), 210. https://doi.org/10.1111/cobi.13104
Ding, Z., Chen, Z., and Yang, Q. (2014). IoT-SVKSearch: A real-Time Multimodal Search Engine Mechanism for the Internet of Things. International Journal of Communication Systems, 27(6), 871-897. https://doi.org/10.1002/dac.2647
Dong, W., Wang, S., and Liu, Y. (2021). Mapping Relationships Between Mobile Phone Call Activity and Regional Function Using a Self-Organizing Map. Computers, Environment and Urban Systems, 87, 101624. https://doi.org/10.1016/j.compenvurbsys.2021.101624
Environmental Systems Research Institute. (2019). The Emergence of a Geospatial Cloud and the Continuing Evolution of Cloud Computing. https://www.esri.com/about/newsroom/arcnews/the-emergence-of-a-geospatial-cloud/?srsltid=AfmBOopcNilqwmIjwnpqcLjIUxc2UNiPcZAZz6xTtNQ2X
Gaigalas (2019). Advanced Cyber Infrastructure to Enable Search of Big Climate Datasets in THREDDS. ISPRS Int. J. Geo Inf., 8, 494. https://doi.org/10.3390/ijgi8110494
Guan, Q., Zeng,W., Gong, J., and Yun, S. (2014). PRPL 2.0: Improving the Parallel Raster Processing Library. Trans. GIS, 18, 25-52. https://doi.org/10.1111/tgis.12109
Gudivada, V. N., Baeza-Yates, R., and Raghavan, V. V. (2015). Big data: Promises and Problems. Computer, (3), 20-23. https://doi.org/10.1109/MC.2015.62
Guo, H. (2017). Big Earth Data: A New Frontier in Earth and Information Sciences. Big Earth Data, 1, 4-20.
Haklay, M., Antoniou, V., Basiouka, S., Soden, R., and Mooney, P. (2014). Crowdsourced Geographic Information use in Government: Global Facility for Disaster Reduction & Recovery (GFDRR), World Bank: London, UK, 76. [Google Scholar]
Hegeman, J. W, Sardeshmukh, V. B., Sugumaran, R., and Armstrong, M. P. (2014). Distributed LiDAR Data Processing in a High-Memory Cloud-Computing Environment. Annals of GIS 20(4), 255-264. https://doi.org/10.1080/19475683.2014.923046
Huang, H. S., Gartner, G., Krisp, J. M., Raubal, M. and Van de Weghe, N. (2018) Location-Based Services: Ongoing Evolution and Research Agenda. Journal of Location Based Services, 12, 63-93. https://doi.org/10.1080/17489725.2018.1508763
Huang, F., Wen, C., Luo, H., Cheng, M., Wang, C., and Li, J. (2016). Local Quality Assessment of Point Clouds for Indoor Mobile Mapping. Neurocomputing, 196, 59-69. https://doi.org/10.1016/j.neucom.2016.02.033
Huang, H., Yao, X. A., Krisp, J. M., and Jiang, B. (2021). Analytics of Location-Based Big Data for Smart Cities: Opportunities, Challenges, and Future diqrections. Computers, Environment and Urban Systems, 90, 101712. https://doi.org/10.1016/j.compenvurbsys.2021.101712
Hu, F., Xia, G. S., Hu, J., and Zhang, L. (2015). Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing imagery. Remote Sensing, 7(11), 14680-14707. https://doi.org/10.3390/rs71114988
Hu, F., Xu, M. C., Yang, J. C., Liang, Y. S., Cui, K. J., Little, M. M., Lynnes, C. S., Duy, D. Q., and Yang, C. W. (2018). Evaluating the Open Source Data Containers for Handling Big Geospatial Raster Data. ISPRS Int. J. Geo Inf., 7, 144. https://doi.org/10.3390/ijgi7040144
Internet Live Stats, (2019), Available at https://www.internetlivestats.com/twitter-statistics
Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., and Mahmoudi, C. (2018) Fog Computing Conceptual Model. NIST Special Publication 500-325. Gaithersburg, MD: NIST. https://doi.org/10.6028/NIST.SP.500-325
Ji, C., Xiong, Z., Fang, C., Lv, H., and Zhang, K. (2017). A GPU-Based Parallel Clustering Method For Electric Power Big Data', Proc. - 2017 4th Int. Conf. Inf. Sci. Control Eng. ICISCE 2017, 29-33. https://doi.org/10.1109/ICISCE.2017.16
Kang, J., Fang, L., Li, S., and Wang, X. (2019). Parallel Cellular Automata Markov Model for Land Use Change Prediction Over MapReduce Framework. ISPRS Int. J. Geo-Inf. 2019, 8, 454. https://doi.org/10.3390/ijgi8100454
Kumar, S., Tiwari, P. and Zymbler, M. (2019). Internet of Things is a Revolutionary Approach for Future Technology Enhancement: A Review. J Big Data 6, 111. https://doi.org/10.1186/s40537-019-0268-2
Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. (2017). Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782. https://doi.org/10.1109/LGRS.2017.2681128
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436. https://doi.org/10.1038/nature14539
Lee, J.-G., and Kang, M. (2015). Geospatial Big Data: Challenges and Opportunities. Big Data Res., 2(2), 74-81. https://doi.org/10.1016/j.bdr.2015.01.003
Lee, G. (2014). Switch Fabric Technology, In Lee, G. (Ed) Cloud Networking. Morgan Kaufmann, 37-64. https://doi.org/10.1016/B978-0-12-800728-0.00003-5
Li, C., Wu, Z. and Yin, J. (2017). Research on Oracle-Based Integrative Storage and Management of Spatial Data. International Conference, 2017, 16-22. https://doi.org/10.1145/3077584.3077587
Li, G., and Huang, Z. (2017). Data Infrastructure for Remote Sensing Big Data: Integration, Management and on-Demand Service. Jisuanji Yanjiu Yu Fazhan/Comput. Res. Dev., 54, 267-283.
Li, Q., and Li, D. (2014). Big data GIS. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 39(6), 641-646. https://doi.org/10.13203/j.whugis20140150
Li, Z., Hodgson, M. E., and Li, W. (2018). A General-Purpose Framework for Parallel Processing Of Large-Scale Lidar Data. Int. J. Digit. Earth, 11, 26-47. https://doi.org/10.1080/17538947.2016.1269842
Li, Z., Yang, C., Yu, M., Liu, K., and Sun M. (2015). Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework. PloS one, 10(3), e0116781. https://doi.org/10.1371/journal.pone.0116781
Ling, F., and Foody, G. M. (2019). Super-Resolution Land Cover Mapping by Deep Learning. Remote Sensing Letters, 10(6), 598-606. https://doi.org/10.1080/2150704X.2019.1587196
Liu, Z., Guo, H., and Wang, C. (2016). Considerations on Geospatial Big Data. IOP Conf. Ser., 46, 012058. https://doi.org/10.1088/1755-1315/46/1/012058
Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., … Shi, L. (2015). Social Sensing: A new Approach to Understanding our Socioeconomic Environments. Annals of the Association of American Geographers, 105(3), 512-530. https://doi.org/10.1080/00045608.2015.1018773
Lu, P, Chen, G., Ooi, B. C., Vo, H. T., and Wu, S. (2014). ScalaGiST: Scalable Generalized Search Trees for MapReduce Systems [innovative systems paper]. Proceedings of the VLDB Endowment, 7(14), 1797-1808. https://doi.org/10.14778/2733085.2733087
Lu, G., Yuan, L., and Yu, Z. (2017). Surveying and Mapping Geographical Information from the Perspective of Geography. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 46(10), 1549-1556. https://doi.org/10.11947/j.AGCS.2017.20170338
Lee, J.-G., and Kang, M. (2015). Geospatial Big Data: Challenges and Opportunities. Big Data Res., 2, 74-81. https://doi.org/10.1016/j.bdr.2015.01.003
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., and Liu, Y. (2017). A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens., 130, 277-293. https://doi.org/10.1016/j.isprsjprs.2017.06.001
Marciniec, M. (2017). Observing World Tweeting Tendencies In Real-Time. https://codete.com/blog/observing-world-tweeting-tendencies-in-real-time-part-2
Maschi, L .F. C., Pinto, A. S. R., Meneguette, R. I., and Baldassin, A. (2018). Data Summarization in the Node by Parameters (DSNP): Local Data Fusion in an IoT Environment. Sensors, 18, 799. https://doi.org/10.3390/s18030799
Mauch, V., Kunze, M., and Hillenbrand, M. (2013). High-performance cloud computing. Future Generation Computer Systems 29(6), 1408-1416. https://doi.org/10.1016/j.future.2012.03.011
Monteiro, A., Dubey, H., Mahler, L., Yang, Q., and Mankodiya, K. (2016). FIT: A Fog Computing Device for Speech Tele-Treatments. 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, 2016, 1-3. https://doi.org/10.1109/SMARTCOMP.2016.7501692
Mulyono, S., and Fanany, M. I. (2015). Remote sensing Big Data Utilization for Paddy Growth Stages Detection. Paper presented at the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, Indonesia, December 3-5. https://doi.org/10.1109/ICARES.2015.7429821
Niculescu, V. (2020). On the Impact of High-Performance Computing in Big Data Analytics for Medicine. Applied Medical Informatics. 42. 9-18.
O'Sullivan, D., and Manson, S. M. (2015). Do Physicists have Geography Envy? and What can Geographers Learn from It? Annals of the Association of American Geographers, 105, 704-722. https://doi.org/10.1080/00045608.2015.1039105
Pardo, D., Matuszyk, P. J., Puzyrev, V., Torres-Verdín, C., Nam, M. J., and Calo, V. M. (2021). Parallel Implementation. Modelling of Resistivity and Acoustic Borehole Logging Measurements using Finite Element Methods. Elsevier. https://doi.org/10.1016/C2019-0-02722-7
Pektürk, M.K., and Ünal, M. (2018). Performance-aware High-Performance Computing For Remote Sensing Big Data Analytics. Open Access Peer-Reviewed Chapter, Intechopen. https://doi.org/10.5772/intechopen.75934
Roughgarden, T. (2019). Beyond Worst-Case Analysis. Commun. ACM, 62, 88-96.
Sabeur, Z, Gibb, R., Purss, M., (2019). Discrete Global Grid Systems SWG. http://www.opengeospatial.org/projects/groups/dggsswg
Safanelli, J. L., Poppiel, R. R., Ruiz, L. F. C., Bonfatti, B. R., Mello, F. A. d. O., Rizzo, R., and Demattê, J. A. M. (2020). Terrain Analysis in Google Earth Engine: A Method Adapted For High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf., 9, 400. https://doi.org/10.3390/ijgi9060400
Sareen, S., Gupta, S. K., Sood, S. K. (2017). An Intelligent and Secure System for Predicting and Preventing Zika Virus Outbreaks Using Fog Computing. Enterprise Information Systems, 1-21. https://doi.org/10.1080/17517575.2016.1277558
Sareen, S., Sood, S. K., Gupta, S. K. (2017). Secure Internet of Things-based cloud Framework to Control the Zika Virus Outbreak. International Journal of Technology Assessment in Health Care, 1-8. https://doi.org/10.1017/S0266462317000113
Satyanarayanan, M. (2017). The Emergence of Edge Computing. IEEE Computer 50(1), 30-39. https://doi.org/10.1109/MC.2017.9
Schmidt, B., González-Domínguez, J., Hundt, C., and Schlarb, M. (2018). Introduction, In Schmidt, B., González-Domínguez, J., Hundt, C., and Schlarb, M. (Eds): Parallel Programming, Morgan Kaufmann, 1-19, https://doi.org/10.1016/B978-0-12-849890-3.00001-0
Schmid, S., Galicz, E., and Reinhardt, W. (2015). Performance Investigation of Selected SQL and NoSQL Databases. In Proceedings of the AGILE 2015, Lisbon, Portugal, 9-12 2015. https://doi.org/10.1109/MILTECHS.2015.7153736
Shi, W., Cao, J., and Zhang, Q. (2016). Edge Computing: Vision and Challenges. IEEE Internet Things J., 3(5), 637-646. https://doi.org/10.1109/JIOT.2016.2579198
Shi W, Dustdar S (2016). The Promise of Edge Computing. IEEE Computer 49(5), 78-81. https://doi.org/10.1109/MC.2016.145
Steffenel, L. A. (2018). Improving the Performance of Fog Computing Through the Use of Data Locality: 2018 30th International Symposium on computer Architecture and High-Performance Computing (SBAV-PAD), Lyon, France, 2018, 217-224. https://doi.org/10.1109/CAHPC.2018.8645879
Sterling, T., Anderson, M., and Brodowicz, M. (2018). HPC Architecture 1: Systems and Technologies. In Sterling, T., Anderson, M., and Brodowicz, M. (Eds)., High Performance Computing, Morgan Kaufmann, 2018, 43-82, https://doi.org/10.1016/B978-0-12-420158-3.00002-2.
Sugumaran, R., and Armstrong, M.P. (2017). Cloud Computing. The International Encyclopedia of Geography: People, the Earth, Environment, and Technology. New York, NY: John Wiley https://doi.org/10.1002/9781118786352.wbieg1017
Tsou, M. -H. (2015). Research Challenges and Opportunities in Mapping Social Media and Big Data. Cartography and Geographic Information Science, 42(Suppl 1), 70-74. https://doi.org/10.1080/15230406.2015.1059251
Verma, P., Sood, S. K., Kalra, S. (2017). Cloud-centric IoT-Based Student Healthcare Monitoring Framework. Journal of Ambient Intelligence and Humanized Computing, 1-17. https://doi.org/10.1007/s12652-017-0520-6
Versichele, M., de Groote, L., Claeys Bouuaert, M., Neutens, T., Moerman, I., and Van de Weghe, N. (2014). Pattern Mining in Tourist Attraction Visits Through Association Rule Learning on Bluetooth Tracking Data: A Case Study of Ghent, Belgium. Tourism Management, 44, 67-81. https://doi.org/10.1016/j.tourman.2014.02.009
VoPham, T., Hart, J. E., Laden, F., and Chiang, Y. Y. (2018). Emerging Trends in Geospatial Artificial Intelligence (geoAI): Potential Applications for Environmental Epidemiology. Environmental Health, 17(1), 40. https://doi.org/10.1186/s12940-018-0386-x
Wang, L., Ma, Y., Yan, J., Chang, V., and Zomaya, A. Y. (2018). Pips Cloud: High-Performance Cloud Computing for Remote Sensing Big Data Management and Processing. Future Generation Computer Systems, 78, 353-368. https://doi.org/10.1016/j.future.2016.06.009
Watts, D. J. (2014). Common Sense and Sociological Explanations. American Journal of Sociology, 120, 313-351. https://doi.org/10.1086/678271
Wei, X., Yao, X. A., (2021). Constructing and Analyzing Spatial-Social Networks from location-Based Social Media Data. 48(3), 258-274. https://doi.org/10.1080/15230406.2021.1891974
Wu. A. (2019). Novel Method of Missing Road Generation in City Blocks Based on Big Mobile Navigation Trajectory Data. ISPRS Int. J. Geo-Inf., 8, 142. https://doi.org/10.3390/ijgi8030142
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., ..., Roy, D. P. (2016). The Global Landsat archive: Status, Consolidation, and Direction. Remote Sensing of Environment, 185, 271-283. https://doi.org/10.1016/j.rse.2015.11.032
Xia, J., Yang, C., and Li, Q. (2018). Building a Spatiotemporal Index for Earth Observation Big Data. Int. J. Appl. Earth Obs., 73, 245-252. https://doi.org/10.1016/j.jag.2018.04.012
Yang, C., Q. Huang, Z. Gui, Z. Li, C. Xu, Y. Jiang, and J. Li. (2013). Cloud Computing Research for Geosciences. In Yang, C., Huang, Q., Li, Z., Xu, C., and K. Liu, (eds.) Spatial Cloud Computing: A Practical Approach. 295-310. Boca Raton, FL: CRC Press/Taylor & Francis. https://doi.org/10.1201/b16106-23
Yang, C., Huang, Q., Li, Z., Liu, K., and Hu, F. (2017). Big Data and Cloud Computing: Innovation Opportunities and Challenges. International Journal of Digital Earth, 10(1), 13-53. https://doi.org/10.1080/17538947.2016.1239771
Yang, C., Yu, M., Hu, F., Jiang, Y., Li, Y., Yang, C., et al. (2016). Utilizing cloud computing to Address Big Geospatial Data Challenges. Computers, Environment and Urban Systems, http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.010
Yang, C., Yu, M., Hu, F., Jiang, Y., and Li, Y. (2017). Utilizing Cloud Computing To Address Big Geospatial Data Challenges. Computers, Environment and Urban Systems, 61, 120-128. https://doi.org/10.1016/j.compenvurbsys.2016.10.010
Yang, J., Paudel, A., and Puri, S. (2019). Spatial Data Decomposition and Load Balancing on HPC Platforms. (Computer Science Faculty Research and Publications. 40. https://epublications.marquette.edu/comp_fac/40Geospatial
Yao, X., and Li, G. (2018). Big Spatial Vector Data Management: A Review. Big Earth Data, 2(1), 108-129. https://doi.org/10.1080/20964471.2018.1432115
Yao, X., Mokbel, M., Ye, S., Li, G., Alarabi, L., Eldawy, A., Zhao, Z., Zhao, L., and Zhu, D. (2018a). Landqv2: A MapReduce-Based System for Processing Arable Land Quality Big Data. ISPRS Int. Geo.-Inf., 7, 271. https://doi.org/10.3390/ijgi7070271
Yao, X., Yang, J., Li, L., Ye, S., Yun, W., and Zhu, D. (2018). A Parallel Algorithm for Partitioning Massive Spatial Vector Data in a Cloud Environment. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1092-1097.
Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., and Wang, S. (2017). A CyberGIS-Jupyter Framework for Geospatial Analytics at Scale. In Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, 18. https://doi.org/10.1145/3093338.3093378
Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: A Cluster Computing Framework for Processing Large-Scale Spatial Data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, 3-6 November 2015, 70. https://doi.org/10.1145/2820783.2820860
Yue, P., Jiang, L. C. (2014). BigGIS: How Big Data Can Shape Next-Generation GIS. In Proceedings of the Third International Conference on Agro-Geoinformatics, Beijing, China, 11-14 August 2014, 413-418. https://doi.org/10.1109/Agro-Geoinformatics.2014.6910649
Zhao, K., Jin, B., Fan, H., Song, W., Zhou, S., and Jiang, Y. (2019). High-Performance Overlay Analysis of Massive Geographic Polygons that Considers Shape Complexity in a Cloud Environment. ISPRS Int. J. Geo-Inf. 2019, 8, 290. https://doi.org/10.3390/ijgi8070290
Zhuang, Y., Fong, S., Yuan, M., Sung, Y., Cho, K., and Wong, R. K. (2017). Location-Based Big Data Analytics for Guessing the Next Foursquare Check-ins. The Journal of Super computing, 73(7), 3112-3127. https://doi.org/10.1007/s11227-016-1925-2
Zook, M., and Breen, J. (2017). Volunteered Geographic Information. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1656
Published
Issue
Section
License
Copyright (c) 2024 Thomas Omali, Ibrahim Garba

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.