AI-POWERED DENTISTRY: REVOLUTIONIZING ORAL CARE

Authors

  • Arpit Sikri Associate Professor & Post Graduate Teacher, Department of Prosthodontics, Crown & Bridge and Oral Implantology, Bhojia Dental College & Hospital, Budh (Baddi), Solan, Himachal Pradesh, India
  • Dr. Jyotsana Sikri Associate Professor & Post Graduate Teacher, Department of Conservative Dentistry & Endodontics, Bhojia Dental College & Hospital, Budh (Baddi), Solan, Himachal Pradesh, India
  • Dr. Rimple Gupta Senior Lecturer, Department of Conservative Dentistry & Endodontics, Guru Nanak Dev Dental College & Research Institute, Sunam, Punjab, India

DOI:

https://doi.org/10.29121/shodhai.v1.i1.2024.2

Keywords:

Artificial Intelligence, Dental AI Applications, Dentistry, Diagnostic Imaging, Ethical Considerations, Machine Learning, Robotic Dentistry, Treatment Planning

Abstract

The dentistry field is changing as a result of artificial intelligence (AI), which is increasing patient care overall, personalising treatment regimens, and boosting diagnostic accuracy. With applications ranging from diagnostic imaging to treatment simulation, AI benefits both practitioners and patients. However, integrating these technologies presents challenges, including data privacy, ethical concerns, and the need for regulatory frameworks. Responsible AI adoption can enhance access to oral healthcare while ensuring efficiency. Ultimately, AI promises a future of precision dentistry that caters to individual needs, while still emphasizing the importance of human qualities like empathy and commitment to patient well-being. In the broader healthcare arena, AI is a transformative force, improving accuracy and reducing human error for healthier smiles and better lives. Artificial Intelligence (AI) has brought significant changes to multiple industries, including dentistry, by improving patient care and optimizing workflows. Its swift progress has revolutionized oral healthcare delivery, offering cutting-edge solutions for everything from diagnosis to treatment planning. This narrative review delves into the diverse roles of AI in dentistry, analyzing its applications, benefits, challenges, and future outlook.

References

Alexander, B., & John, S. (2018). Artificial Intelligence in Dentistry: Current Concepts and a Peep into the Future. International Journal of Advanced Research, 30, 1105-1108. https://doi.org/10.21474/IJAR01/8242

Aliaga, I.J., Vera, V., De Paz, J.F., García, A.E., & Mohamad, M.S. (2015). Modelling the Longevity of Dental Restorations by Means of a CBR System. Biomed Res Int. https://doi.org/10.1155/2015/540306

Aminoshariae, A., Kulild, J., & Nagendrababu, V. (2021). Artificial Intelligence in Endodontics: Current Applications and Future Directions. J Endod, 47, 1352-1357. https://doi.org/10.1016/j.joen.2021.06.003

Amisha, Malik, P., Pathania, M., & Vyas, R. (2019). Overview of Artificial Intelligence in Medicine. Journal of Family Medicine and Primary Care, 8, 2328-31. https://doi.org/10.4103/jfmpc.jfmpc_440_19

Anil, S., & Anand P.S. (2017). Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front. Pediatr, 5, 157. https://doi.org/10.3389/fped.2017.00157

Bas, B., Ozgonenel, O., Ozden, B., Bekcioglu, B., Bulut, E., & Kurt, M. (2012). Use of Artificial Neural Network in Differentiation of Subgroups of Tem- Poromandibular Internal Derangements: A Preliminary Study. J Oral Maxillofac Surg, 70(1), 51-9. https://doi.org/10.1016/j.joms.2011.03.069

Berdouses, E. D., Koutsouri, G. D., Tripoliti, E. E., Matsopoulos, G. K., Oulis, C. J., & Fotiadis, D. I. (2015). A Computer-Aided Automated Methodology for the Detection and Classification of Occlusal Caries from Photographic Color Images. Computers in Biology and Medicine, 62, 119-135. https://doi.org/10.1016/j.compbiomed.2015.04.016

Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Com- Puting: What Do These Terms Mean and How Will They Impact Health Care? J Arthro- Plasty, 33(8), 2358-61. https://doi.org/10.1016/j.arth.2018.02.067

Cabitza, F., Locoro, A., & Banfi, G. (2018). Machine Learning in Orthopedics: A Literature Review. Front Bioeng Biotechnol, 6, 75. https://doi.org/10.3389/fbioe.2018.00075

Chang, S.-W., Abdul-Kareem, S., Merican, A. F., & Zain, R. B. (2013). Oral Cancer Prognosis Based on Clinicopathologic and Genomic Markers Using a Hybrid of Feature Selection and Machine Learning Methods. BMC Bioinformatics, 14, 170. https://doi.org/10.1186/1471-2105-14-170

Chen, Q., Wu, J., Li, L., Lyu, P., Wang, Y., & Li, M. (2016). An Ontology-Driven, Case-Based Clinical Decision Support Model for Removable Partial Denture Design. Sci Rep, 6. https://doi.org/10.1038/srep27855

Dar-Odeh, N.S., Alsmadi, O.M., Bakri, F., Abu-Hammour, Z., Shehabi, A.A., Al-Omiri, M.K., Abu-Hammad, S.M.K., Al-Mashni, H., Saeed, M.B., Muqbil, W., & Abu-Hammad, O. (2010). Predicting Recurrent Aphthous Ulceration using Genetic Algo- Rithms-Optimized Neural Networks. Adv Appl Bioinform Chem, 3, 7-13. https://doi.org/10.2147/AABC.S10177

Deshmukh, S. (2018). Artificial Intelligence in Dentistry. J Int Clin Dent Res Organ, 10, 47. https://doi.org/10.4103/jicdro.jicdro_17_18

Fisher-Owens, S.A., Gansky, S.A., Platt, L.J., Weintraub, J.A., Soobader, M.-J., Bramlett, M.D., & Newacheck, P.W. (2007). Influences on Children's Oral Health: A Conceptual Model. Pediatrics, 120, e510-e520. https://doi.org/10.1542/peds.2006-3084

Goyal, A., Ngufor, C., Kerezoudis, P., McCutcheon, B., Storlie, C., & Bydon, M. (2019). Can Machine Learning Algorithms Accurately Predict Discharge to Non- Home Facility and Early Unplanned Readmissions Following Spinal Fusion? Analysis of a National Surgical Registry. J Neurosurg Spine, 1-11. https://doi.org/10.3171/2019.3.SPINE181367

Hwang, J.J., Jung, Y.H., Cho, B.H., & Heo, M.S. (2019, Mar). An Overview of Deep Learning in the Field of Dentistry. Imaging Sci Dent, 49(1), 1-7. https://doi.org/10.5624/isd.2019.49.1.1

Jung, S.K., & Kim, T.W. (2016). New Approach for the Diagnosis of Extractions with Neural Network Machine Learning. Am J Orthod Dentofacial Orthop, 149(1), 127-33. https://doi.org/10.1016/j.ajodo.2015.07.030

Keskin, C., & Keleş, A. (2021). Digital Applications in Endodontics. Journal of Experimental & Clinical Medicine, 38(SI-2), 168-174. https://doi.org/10.52142/omujecm.38.si.dent.15

Khanagar, S.B., Al-ehaideb, A., Maganur, P.C., Vishwanathaiah, S., Patil, S., Baeshen, H.A., Sarode, S.C., & Bhandi, S. (2021). Developments, Application, and Performance of Artificial Intelligence in Dentistry-A Systematic Review. Journal of Dental Sciences, 16(1), 508-22. https://doi.org/10.1016/j.jds.2020.06.019

Kositbowornchai, S., Plermkamon, S., & Tangkosol, T. (2013). Performance of an Artificial Neural Network for Vertical Root Fracture Detection: An Ex Vivo Study. Dent. Traumatol, 29, 151-155. https://doi.org/10.1111/j.1600-9657.2012.01148.x

Lee, J.H., Kim, D.-H., Jeong, S.-N., & Choi, S.-H. (2018). Diagnosis and Prediction of Periodontally Compromised Teeth using a Deep Learning-Based Convolutional Neural Network Algorithm. J Periodontal Implant Sci, 48(2), 114-23. https://doi.org/10.5051/jpis.2018.48.2.114

Li H, Lai, L., Chen, L., & Cai, Q. (2015). The Prediction in Computer Color Matching of Dentistry Based on GA + BP Neural Network. Comput Math Methods Med. https://doi.org/10.1155/2015/816719

Lovgren, A., Marklund, S., Visscher, C. M., Lobbezoo, F., Häggman-Henrikson, B., & Wänman, A. (2017). Outcome of Three Screening Questions for Temporomandibular Dis- Orders (3Q/TMD) on Clinical Decision-Making. J Oral Rehabil, 44(8), 573-9. https://doi.org/10.1111/joor.12518

Meghil, M.M., Rajpurohit, P., Awad, M.E., McKee, J., Shahoumi, L.A, & Ghaly, M. (2022). Artificial Intelligence in Dentistry. Dent Rev, 2. https://doi.org/10.1016/j.dentre.2021.100009

Michelinakis, G., Sharrock, A., & Barclay, C.W. (2006). Identification of Dental Implants Through the Use of Implant Recognition Software (IRS). Int Dent J , 56, 203-8. https://doi.org/10.1111/j.1875-595X.2006.tb00095.x

Moayeri, R.S., & Khalili, M. (2015). Prediction of Success of Dental Implants Using the W- J48 Decision Tree Algorithm. Eng Res J, 3(7), 161-8.

Morais, P., Queirós, S., Moreira, A.H.J., Ferreira, A., Ferreira, E., Duque, D., Rodrigues, N. F., & Vilaça, J. (2015). Computer-Aided Recognition of Dental Implants in X-Ray Images. Proc SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis. https://doi.org/10.1117/12.2082796

Nakano, Y., Takeshita, T., Kamio, N., Shiota, S., Shibata, Y., Suzuki, N., Yoneda, M., Hirofuji, T., Yamashita, Y. (2014). Supervised Machine Learning-Based Classification of Oral Malodor Based on the Microbiota in Saliva Samples. Artif Intell Med, 60(2), 97-101. https://doi.org/10.1016/j.artmed.2013.12.001

Nguyen, T.T., Larrivée, N., Lee, A., Bilaniuk, O., & Durand, R. (2021, May). Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc, 87, l7.

Okada, K., Rysavy, S., Flores, A., & Linguraru, M.G. (2015). Noninvasive Differential Diagnosis of Dental Periapical Lesions in Cone-Beam CT Scans. Med Phys, 42, 1653-1665. https://doi.org/10.1118/1.4914418

Olszowski, T., Adler, G., Janiszewska-Olszowska, J., Safranow, K., & Kaczmarczyk, M. (2012). MBL2, MASP2, AMELX, and ENAM Gene Polymorphisms and Dental Caries in Polish Children. Oral Dis, 18, 389-395. https://doi.org/10.1111/j.1601-0825.2011.01887.x

Praveena, N., Imran Pasha, M., & Shenoy, R. P. (2023). Artificial Intelligence in Public Health Dentistry. Int. J. of Adv. Res. 1458-1461. https://doi.org/10.21474/IJAR01/16810

Ryu, J., Lee, D.-M., Jung, Y.-H., Kwon, O., Park, S., Hwang, J., & Lee, J.-Y. (2023). Automated Detection of Periodontal Bone Loss Using Deep Learning and Panoramic Radiographs: A Convolutional Neural Network Approach. Appl. Sci., 13. https://doi.org/10.3390/app13095261

Sahiwal, I.G., Woody, R.D., Benson, B.W., & Guillen, G.E. (2002). Radiographic Identification of Nonthreaded Endosseous Dental Implants. J Prosthet Dent, 87, 552-62. https://doi.org/10.1067/mpr.2002.124431

Schwendicke, F., Golla, T., Dreher, M., & Krois, J. (2019). Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J Dent, 91. https://doi.org/10.1016/j.jdent.2019.103226

Schwendicke, F., Samek, W., & Krois, J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99, 769-774. https://doi.org/10.1177/0022034520915714

Scott, J., Biancardi, A.M., Jones, O., & Andrew, D. (2023). Artificial Intelligence in Periodontology: A Scoping Review. Dent J (Basel), 11(2), 43. https://doi.org/10.3390/dj11020043

Scrobotă, I., Băciuț, G., Filip, A. G., Todor, B., Blaga, F., & Băciuț, M. F. (2017). Application of Fuzzy Logic in Oral Cancer Risk Assessment. Iran J Public Health, 46(5), 612-19.

Shan, T., Tay, F.R., & Gu, L. (2021). Application of Artificial Intelligence in Dentistry. Journal of Dental Research, 100, 232-244. https://doi.org/10.1177/0022034520969115

Stevenson, A. (2010). Oxford Dictionary of English. USA: Oxford University Press.

Takada, K., Yagi, M., & Horiguchi, E. (2009). Computational Formulation of Orthodontic Tooth-Extraction Decisions. Part I: to Extract or Not to Extract. Angle Orthod, 79(5), 885-91. https://doi.org/10.2319/081908-436.1

Tandon, D., & Rajawat, J. (2020). Present and Future of Artificial Intelligence in Dentistry. Journal of Oral Biology and Craniofacial Research, 10, 391-396. https://doi.org/10.1016/j.jobcr.2020.07.015

Thurzo, A., Urbanová, W., Novák, B., Czako, L., Siebert, T., Stano, P., Mareková, S., Fountoulaki, G., Kosnáčová, H., & Varga, I. (2022, Jul 8). Where is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel), 10(7). https://doi.org/10.3390/healthcare10071269

Tiwari, A., Kumar, A., Jain, S., Dhull, K.S., Sajjanar, A., Puthenkandathil, R., Paiwal, K., & Singh, R. (2023, Jun 13). Implications of ChatGPT in Public Health Dentistry: A Systematic Review. Cureus, 15(6). https://doi.org/10.7759/cureus.40367

Vodanović, M., Subašić, M., Milošević, D.P., Galić, I., & Brkić, H. (2023, Aug 27). Artificial Intelligence in Forensic Medicine and Forensic Dentistry. J Forensic Odontostomatol, 41(2), 30-41.

Zhang, Y., Kang, B., Hooi, B., Yan, S., & Feng, J. (2021). Deep Long-Tailed Learning: A Survey. https://doi.org/10.48550/arXiv.2110.04596

Downloads

Published

2024-07-27