AI-POWERED DENTISTRY: REVOLUTIONIZING ORAL CARE
DOI:
https://doi.org/10.29121/shodhai.v1.i1.2024.2Keywords:
Artificial Intelligence, Dental AI Applications, Dentistry, Diagnostic Imaging, Ethical Considerations, Machine Learning, Robotic Dentistry, Treatment PlanningAbstract
The dentistry field is changing as a result of artificial intelligence (AI), which is increasing patient care overall, personalising treatment regimens, and boosting diagnostic accuracy. With applications ranging from diagnostic imaging to treatment simulation, AI benefits both practitioners and patients. However, integrating these technologies presents challenges, including data privacy, ethical concerns, and the need for regulatory frameworks. Responsible AI adoption can enhance access to oral healthcare while ensuring efficiency. Ultimately, AI promises a future of precision dentistry that caters to individual needs, while still emphasizing the importance of human qualities like empathy and commitment to patient well-being. In the broader healthcare arena, AI is a transformative force, improving accuracy and reducing human error for healthier smiles and better lives. Artificial Intelligence (AI) has brought significant changes to multiple industries, including dentistry, by improving patient care and optimizing workflows. Its swift progress has revolutionized oral healthcare delivery, offering cutting-edge solutions for everything from diagnosis to treatment planning. This narrative review delves into the diverse roles of AI in dentistry, analyzing its applications, benefits, challenges, and future outlook.
References
Alexander, B., & John, S. (2018). Artificial Intelligence in Dentistry: Current Concepts and a Peep into the Future. International Journal of Advanced Research, 30, 1105-1108. https://doi.org/10.21474/IJAR01/8242
Aliaga, I.J., Vera, V., De Paz, J.F., García, A.E., & Mohamad, M.S. (2015). Modelling the Longevity of Dental Restorations by Means of a CBR System. Biomed Res Int. https://doi.org/10.1155/2015/540306
Aminoshariae, A., Kulild, J., & Nagendrababu, V. (2021). Artificial Intelligence in Endodontics: Current Applications and Future Directions. J Endod, 47, 1352-1357. https://doi.org/10.1016/j.joen.2021.06.003
Amisha, Malik, P., Pathania, M., & Vyas, R. (2019). Overview of Artificial Intelligence in Medicine. Journal of Family Medicine and Primary Care, 8, 2328-31. https://doi.org/10.4103/jfmpc.jfmpc_440_19
Anil, S., & Anand P.S. (2017). Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front. Pediatr, 5, 157. https://doi.org/10.3389/fped.2017.00157
Bas, B., Ozgonenel, O., Ozden, B., Bekcioglu, B., Bulut, E., & Kurt, M. (2012). Use of Artificial Neural Network in Differentiation of Subgroups of Tem- Poromandibular Internal Derangements: A Preliminary Study. J Oral Maxillofac Surg, 70(1), 51-9. https://doi.org/10.1016/j.joms.2011.03.069
Berdouses, E. D., Koutsouri, G. D., Tripoliti, E. E., Matsopoulos, G. K., Oulis, C. J., & Fotiadis, D. I. (2015). A Computer-Aided Automated Methodology for the Detection and Classification of Occlusal Caries from Photographic Color Images. Computers in Biology and Medicine, 62, 119-135. https://doi.org/10.1016/j.compbiomed.2015.04.016
Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Com- Puting: What Do These Terms Mean and How Will They Impact Health Care? J Arthro- Plasty, 33(8), 2358-61. https://doi.org/10.1016/j.arth.2018.02.067
Cabitza, F., Locoro, A., & Banfi, G. (2018). Machine Learning in Orthopedics: A Literature Review. Front Bioeng Biotechnol, 6, 75. https://doi.org/10.3389/fbioe.2018.00075
Chang, S.-W., Abdul-Kareem, S., Merican, A. F., & Zain, R. B. (2013). Oral Cancer Prognosis Based on Clinicopathologic and Genomic Markers Using a Hybrid of Feature Selection and Machine Learning Methods. BMC Bioinformatics, 14, 170. https://doi.org/10.1186/1471-2105-14-170
Chen, Q., Wu, J., Li, L., Lyu, P., Wang, Y., & Li, M. (2016). An Ontology-Driven, Case-Based Clinical Decision Support Model for Removable Partial Denture Design. Sci Rep, 6. https://doi.org/10.1038/srep27855
Dar-Odeh, N.S., Alsmadi, O.M., Bakri, F., Abu-Hammour, Z., Shehabi, A.A., Al-Omiri, M.K., Abu-Hammad, S.M.K., Al-Mashni, H., Saeed, M.B., Muqbil, W., & Abu-Hammad, O. (2010). Predicting Recurrent Aphthous Ulceration using Genetic Algo- Rithms-Optimized Neural Networks. Adv Appl Bioinform Chem, 3, 7-13. https://doi.org/10.2147/AABC.S10177
Deshmukh, S. (2018). Artificial Intelligence in Dentistry. J Int Clin Dent Res Organ, 10, 47. https://doi.org/10.4103/jicdro.jicdro_17_18
Fisher-Owens, S.A., Gansky, S.A., Platt, L.J., Weintraub, J.A., Soobader, M.-J., Bramlett, M.D., & Newacheck, P.W. (2007). Influences on Children's Oral Health: A Conceptual Model. Pediatrics, 120, e510-e520. https://doi.org/10.1542/peds.2006-3084
Goyal, A., Ngufor, C., Kerezoudis, P., McCutcheon, B., Storlie, C., & Bydon, M. (2019). Can Machine Learning Algorithms Accurately Predict Discharge to Non- Home Facility and Early Unplanned Readmissions Following Spinal Fusion? Analysis of a National Surgical Registry. J Neurosurg Spine, 1-11. https://doi.org/10.3171/2019.3.SPINE181367
Hwang, J.J., Jung, Y.H., Cho, B.H., & Heo, M.S. (2019, Mar). An Overview of Deep Learning in the Field of Dentistry. Imaging Sci Dent, 49(1), 1-7. https://doi.org/10.5624/isd.2019.49.1.1
Jung, S.K., & Kim, T.W. (2016). New Approach for the Diagnosis of Extractions with Neural Network Machine Learning. Am J Orthod Dentofacial Orthop, 149(1), 127-33. https://doi.org/10.1016/j.ajodo.2015.07.030
Keskin, C., & Keleş, A. (2021). Digital Applications in Endodontics. Journal of Experimental & Clinical Medicine, 38(SI-2), 168-174. https://doi.org/10.52142/omujecm.38.si.dent.15
Khanagar, S.B., Al-ehaideb, A., Maganur, P.C., Vishwanathaiah, S., Patil, S., Baeshen, H.A., Sarode, S.C., & Bhandi, S. (2021). Developments, Application, and Performance of Artificial Intelligence in Dentistry-A Systematic Review. Journal of Dental Sciences, 16(1), 508-22. https://doi.org/10.1016/j.jds.2020.06.019
Kositbowornchai, S., Plermkamon, S., & Tangkosol, T. (2013). Performance of an Artificial Neural Network for Vertical Root Fracture Detection: An Ex Vivo Study. Dent. Traumatol, 29, 151-155. https://doi.org/10.1111/j.1600-9657.2012.01148.x
Lee, J.H., Kim, D.-H., Jeong, S.-N., & Choi, S.-H. (2018). Diagnosis and Prediction of Periodontally Compromised Teeth using a Deep Learning-Based Convolutional Neural Network Algorithm. J Periodontal Implant Sci, 48(2), 114-23. https://doi.org/10.5051/jpis.2018.48.2.114
Li H, Lai, L., Chen, L., & Cai, Q. (2015). The Prediction in Computer Color Matching of Dentistry Based on GA + BP Neural Network. Comput Math Methods Med. https://doi.org/10.1155/2015/816719
Lovgren, A., Marklund, S., Visscher, C. M., Lobbezoo, F., Häggman-Henrikson, B., & Wänman, A. (2017). Outcome of Three Screening Questions for Temporomandibular Dis- Orders (3Q/TMD) on Clinical Decision-Making. J Oral Rehabil, 44(8), 573-9. https://doi.org/10.1111/joor.12518
Meghil, M.M., Rajpurohit, P., Awad, M.E., McKee, J., Shahoumi, L.A, & Ghaly, M. (2022). Artificial Intelligence in Dentistry. Dent Rev, 2. https://doi.org/10.1016/j.dentre.2021.100009
Michelinakis, G., Sharrock, A., & Barclay, C.W. (2006). Identification of Dental Implants Through the Use of Implant Recognition Software (IRS). Int Dent J , 56, 203-8. https://doi.org/10.1111/j.1875-595X.2006.tb00095.x
Moayeri, R.S., & Khalili, M. (2015). Prediction of Success of Dental Implants Using the W- J48 Decision Tree Algorithm. Eng Res J, 3(7), 161-8.
Morais, P., Queirós, S., Moreira, A.H.J., Ferreira, A., Ferreira, E., Duque, D., Rodrigues, N. F., & Vilaça, J. (2015). Computer-Aided Recognition of Dental Implants in X-Ray Images. Proc SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis. https://doi.org/10.1117/12.2082796
Nakano, Y., Takeshita, T., Kamio, N., Shiota, S., Shibata, Y., Suzuki, N., Yoneda, M., Hirofuji, T., Yamashita, Y. (2014). Supervised Machine Learning-Based Classification of Oral Malodor Based on the Microbiota in Saliva Samples. Artif Intell Med, 60(2), 97-101. https://doi.org/10.1016/j.artmed.2013.12.001
Nguyen, T.T., Larrivée, N., Lee, A., Bilaniuk, O., & Durand, R. (2021, May). Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc, 87, l7.
Okada, K., Rysavy, S., Flores, A., & Linguraru, M.G. (2015). Noninvasive Differential Diagnosis of Dental Periapical Lesions in Cone-Beam CT Scans. Med Phys, 42, 1653-1665. https://doi.org/10.1118/1.4914418
Olszowski, T., Adler, G., Janiszewska-Olszowska, J., Safranow, K., & Kaczmarczyk, M. (2012). MBL2, MASP2, AMELX, and ENAM Gene Polymorphisms and Dental Caries in Polish Children. Oral Dis, 18, 389-395. https://doi.org/10.1111/j.1601-0825.2011.01887.x
Praveena, N., Imran Pasha, M., & Shenoy, R. P. (2023). Artificial Intelligence in Public Health Dentistry. Int. J. of Adv. Res. 1458-1461. https://doi.org/10.21474/IJAR01/16810
Ryu, J., Lee, D.-M., Jung, Y.-H., Kwon, O., Park, S., Hwang, J., & Lee, J.-Y. (2023). Automated Detection of Periodontal Bone Loss Using Deep Learning and Panoramic Radiographs: A Convolutional Neural Network Approach. Appl. Sci., 13. https://doi.org/10.3390/app13095261
Sahiwal, I.G., Woody, R.D., Benson, B.W., & Guillen, G.E. (2002). Radiographic Identification of Nonthreaded Endosseous Dental Implants. J Prosthet Dent, 87, 552-62. https://doi.org/10.1067/mpr.2002.124431
Schwendicke, F., Golla, T., Dreher, M., & Krois, J. (2019). Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J Dent, 91. https://doi.org/10.1016/j.jdent.2019.103226
Schwendicke, F., Samek, W., & Krois, J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99, 769-774. https://doi.org/10.1177/0022034520915714
Scott, J., Biancardi, A.M., Jones, O., & Andrew, D. (2023). Artificial Intelligence in Periodontology: A Scoping Review. Dent J (Basel), 11(2), 43. https://doi.org/10.3390/dj11020043
Scrobotă, I., Băciuț, G., Filip, A. G., Todor, B., Blaga, F., & Băciuț, M. F. (2017). Application of Fuzzy Logic in Oral Cancer Risk Assessment. Iran J Public Health, 46(5), 612-19.
Shan, T., Tay, F.R., & Gu, L. (2021). Application of Artificial Intelligence in Dentistry. Journal of Dental Research, 100, 232-244. https://doi.org/10.1177/0022034520969115
Stevenson, A. (2010). Oxford Dictionary of English. USA: Oxford University Press.
Takada, K., Yagi, M., & Horiguchi, E. (2009). Computational Formulation of Orthodontic Tooth-Extraction Decisions. Part I: to Extract or Not to Extract. Angle Orthod, 79(5), 885-91. https://doi.org/10.2319/081908-436.1
Tandon, D., & Rajawat, J. (2020). Present and Future of Artificial Intelligence in Dentistry. Journal of Oral Biology and Craniofacial Research, 10, 391-396. https://doi.org/10.1016/j.jobcr.2020.07.015
Thurzo, A., Urbanová, W., Novák, B., Czako, L., Siebert, T., Stano, P., Mareková, S., Fountoulaki, G., Kosnáčová, H., & Varga, I. (2022, Jul 8). Where is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare (Basel), 10(7). https://doi.org/10.3390/healthcare10071269
Tiwari, A., Kumar, A., Jain, S., Dhull, K.S., Sajjanar, A., Puthenkandathil, R., Paiwal, K., & Singh, R. (2023, Jun 13). Implications of ChatGPT in Public Health Dentistry: A Systematic Review. Cureus, 15(6). https://doi.org/10.7759/cureus.40367
Vodanović, M., Subašić, M., Milošević, D.P., Galić, I., & Brkić, H. (2023, Aug 27). Artificial Intelligence in Forensic Medicine and Forensic Dentistry. J Forensic Odontostomatol, 41(2), 30-41.
Zhang, Y., Kang, B., Hooi, B., Yan, S., & Feng, J. (2021). Deep Long-Tailed Learning: A Survey. https://doi.org/10.48550/arXiv.2110.04596
Published
Issue
Section
License
Copyright (c) 2024 Arpit Sikri, Dr. Jyotsana Sikri, Dr. Rimple Gupta

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.